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We developed a Computational Linguistics (CL) information 
extraction (IE) model that identifies the dimension, location, and 
characteristics of the largest lung nodule mentioned in a free-text 
radiology report. The model is based on a set of rich linguistic rules 
and an in-house knowledge base. It was developed on ~20,000 
randomly selected radiology reports from 18 institutions. The 
manually created gold standard consisted of 2,480 reports with 
2,070 true positive and 410 true negative results. The overall 
accuracy between the model and the gold standard for the presence 
of a lung nodule was 98.95%, with 98.99% precision and 99.66% 
recall. The measurement accuracy of the largest nodule was 
97.74%. In this document, we provide an introduction to CL and IE 
modeling in particular; briefly describe related publications; outline 
our modeling approach; and review pertinent results.
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Computational Linguistics (CL) is a relatively new interdisciplinary field that creates computer systems 
capable of understanding, analyzing, and extracting meaning from written and spoken language. It is based on 
traditional Linguistics, Statistics, Computer Science (CS), and Machine Learning (ML). CL, in conjunction with 
knowledge representation and formal reasoning theories, creates a foundation for Artificial Intelligence (AI).

Once a topic of science fiction, the ability of machines to use human language is now fundamental to many 
applications that are integral parts of our daily lives. Web search engines, email spam filters, translation 
software, dictation modules on our phones and computers, digital voice assistants, and chatbots are 
examples of CL applications. 

CL studies several, somewhat overlapping, domains. They include machine translation (MT), automatic 
speech recognition (ASR), text-to-speech (TTS), information extraction (IE), natural language understanding 
(NLU), natural language generation (NLG), conversational NLP, and ontology learning (OL). 

While each subfield of CL has its applications in healthcare, we focus our paper on Information Extraction, one 
of the most actively developing areas. IE turns the unstructured information embedded in text into structured 
data, for example, for populating a relational database or creating a time series [2]. The model presented in this 
paper is an IE model and we will cover its components in the EON Model Methods section.
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COMPUTATIONAL
LINGUISTICS
Human knowledge is expressed in language. 
So computational linguistics is very important.
Mark Steedman, ACL Presidential Address [1]
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A typical IE system performs the following steps [2]: tokenization and lemmatization, sentence boundary detection, 
part-of-speech tagging/dependency parsing, named entity recognition/disambiguation, coreference resolution, relation 
extraction, temporality normalization, and template filling. Most of these tasks are intuitive and easy for humans to perform, 
but for computer systems, are quite challenging. Below is a brief description of each task.

Tokenization: Breaking text into a sequence of tokens 
representing words, punctuation, acronyms, URLs, etc.
This is the most basic task, and multiple “out-of-the-box” 
solutions exist that perform tokenization well. Some 
adjustments to out-of-the-box solutions are needed to 
adapt them to the clinical domain and to take into 
consideration specifics of the language used in EHRs.

Lemmatization: Finding the base form of words, or words 
that can be looked up in a dictionary. Some challenges that 
exist include determining which part of speech a word 
belongs to: “I am a doctor (am => to be)” OR “It is 5 am
(am => a.m.)” 

Sentence Boundary Detection: A well-implemented task for 
general text, such as literature, periodicals, web articles, 
and social media posts. However, in the clinical domain, 
there are challenges due to nonstandard or ambiguous 
abbreviations, incomplete sentences, use of jargon, lack of 
punctuation caused by either omission or by optical 
character recognition (OCR) software, and more.

Part-of-Speech Tagging (POS): Determining the part of 
speech each token in a sentence is (noun, verb, adjective, 
adverb, etc.).   

Dependency Parsing: Determining syntactic dependencies 
between words in a sentence (subject, object, adjectival 
modifier, etc.). POS tagging and dependency parsing are 
well-developed on general text. However, these models 
perform rather poorly on clinical narratives in part because 
of specific vocabulary, irregular writing style, and a lack of 
annotated data sets for training models.

Named Entity Recognition (NER): A subtask of IE, NER 
aims to locate and classify named entities mentioned in 
unstructured text into predefined categories such as 
person names, organizations, locations, medical codes, 
time expressions, quantities, etc.

Named Entity Disambiguation: A task of assigning a 
unique identity to entities mentioned in text. That identity 
associates an input text fragment, identified as a named 
entity, to a corresponding unique entity in a target 
knowledge base. For example, an “apple” can be the fruit 
produced by an apple tree (Malus domestica) and be 
identified by Germplasm Resources Information Network 
(GRIN) Taxonomy #104681 [6].  Alternatively, it can also 
refer to Apple, Inc. – a corporation registered with the 
Security and Exchange Commission (SEC) and identified by 
SEC CIK #0000320193 [7]. 

Coreference Resolution: The task of determining whether 
two mentions in the text co-refer, i.e. refer to the same 
entity in the discourse model (said another way, the same 
discourse entity) [2]. For example: “There is a ground-glass 
opacity in the left lung. Today it measures 7 mm. On the 
previous study, the area measured 5 mm”. In the 2nd and 
3rd sentences, “it” and “the area” both refer to “a 
ground-glass opacity” mentioned in the 1st sentence.
Relation Extraction: The task of extracting relationships 
between identified named entities (located in, part of, has 
characteristic, etc.)

Temporality Detection and Normalization: Determining 
when the events described in text occurred and aligning the 
relative expressions like “on the previous study” or “last 
year” with the context baseline time.

Template Filling: Organizing extracted data in a 
structured form.

There are two additional fundamental models that are often 
used in conjunction with IE: word frequency models and the 
word embeddings model. We used both in exploratory data 
analysis as well as for developing our linguistic rules—these 
are covered in more detail on the following pages.
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IE BUILDING BLOCKS



The two most basic tools used in CL for information extraction are bag-of-words (BOW) and TF-IDF (Term Frequency 
- Inverse Document Frequency) models.

Bag-of-words is based on calculating word occurrences in text documents. Figure 1 shows a visual representation 
(called a word cloud) of the most frequent 500 words in 20K chest CT reports. The size of the words is 
proportional to their frequency in the documents.

On the other hand, TF-IDF evaluates how important a word is to a document. Its value increases 
proportionally to the number of times the word appears in the document and is offset by the number 
of documents containing the word.
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WORD
FREQUENCY MODELS

Figure 1. Word cloud built on word 
frequency from 20K chest CT reports. 
The image was generated using 
https://www.wordclouds.com/



Word embeddings model builds a multidimensional representation of the words based on their semantic 
similarity [8]. It is an unsupervised model (requiring no human involvement for data annotation or feature 
engineering) but requires a lot of contextual data. We trained our word embeddings model on 8M radiology 
reports. Figure 2 contains an intuitive visualization of the word embedding model. Nine seed words were 
selected (lung, nodule, carcinoma, ground glass, pneumonia, image, patient, implant, firefighter), and for each 
of them, the 25 most similar words were identified by the model. After reducing the dimensionality from 150 
to 2, the word embeddings were plotted (Figure 2). The coordinates of the dots on this graph reflect the word’s 
semantic roles. On the right side of the graph, the “lung,” “ground glass,” and “pneumonia” clusters (purple, 
teal, green) are distinct but are not completely separated from each other. Also, while the “nodule” cluster 
(lavender) is mostly on the upper left, close to the “carcinoma” cluster (blue), there are very few words 
(nodules and nodularities) that are on the right-hand side of the graph and pretty close to the “lung” cluster.

Word embeddings (vectors) are used to calculate the semantic similarity between words and phrases. 
They are also used as input features to most of the IE sub-models described above.
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WORD
EMBEDDINGS MODEL

Figure 2. Word embeddings visualization. (Note: first and last names in “patient” cluster were replaced by the most frequent names in the US [5])



There are a number of research publications studying clinical IE systems and several review articles. In one 
review [3], 263 publications from 2009 to 2016 were identified, including 43 papers with radiology reports as the 
data source. Another review [4] reported 63 systems analyzing radiology reports. 

We reviewed the literature and identified the most recent, relevant publications with the highest performance to 
use for benchmarking. The following four were the best match to the objectives of our model, and are 
presented in order from the least similar to most similar to our model:

The earliest relevant work was by Kaiser 
Permanente, published in 2013 [9]. They 

created a basic, rule-based model to identify 
radiology reports containing mention of lung 
nodules. The model combined diagnostic codes, 
procedure codes, and text mining. The model was 
run on about 7,000 reports of health plan members 
who underwent chest CT exams after receiving a 
diagnosis code indicating the possible presence of 
lung nodules. The model did not extract nodule 
measurements or characteristics, it was a binary 
classification model (nodule present or absent). 
Based on ~100 annotated reports, the model’s 
precision was 87% and recall 96%

More similar to ours, a model to extract and 
categorize finding measurements was created 

in 2015 by Philips (Healthcare) Research [10]. This 
model extracted organ measurements using regular 
expressions and categorized them into three 
groups—a measurement of a clinical finding, relative 
position (distance), and technical spec (image, slice, 
etc.). Then measurement temporality was 
determined using an ML method. The model did not 
determine which clinical finding the specific 
measurement was describing nor the location of the 
finding. The model was evaluated on 2,000 
sentences (not documents), all from a single 

institution. Measurement extraction precision was 
99.4% and recall was 99.1%. Accuracy of the 
classification (location of the finding within the 
organ) was 96%.

In 2016, a NER model was developed at 
Stanford University [11] that extracted five 

categories from radiology reports—organs, organ 
locations, clinical findings, characteristics, and 
expressions of uncertainty. This model performance 
was the lowest among these four publications, with 
87.7% precision and 82.9% recall, averaged over
the 4 classifiers.

In 2019, another model was developed by 
Stanford researchers [12]—this is the most 

similar to our model. Their objective was to extract 
measurements and their temporality, organ, and 
characteristics. The model was based on a combina-
tion of rules and ML, similar to ours. It was developed 
on 1K records from a single institution, with 100 
records manually annotated. The measurement-only 
accuracy was at 97%, however the model perfor-
mance deteriorated quickly with the addition of other 
modifiers: measurement + organ: 83%; measurement 
+ organ + abnormality: 80%; and measurement + 
organ + abnormality + characteristic: 66%.
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Our goal was to create a model for extraction of the measurement, location, and characteristics of the largest lung nodule 
mentioned in a radiology report. To develop this model, we selected a dataset of 20,000 radiology reports mentioning lung 
findings from 18 different institutions. Based on this dataset, we developed a collection of linguistic rules using various CL 
techniques, ranging from bag of words (BOW) to word embeddings. 

We used a combination of a neural-network-based ML model for standard CL tasks, including POS-tagging and dependency 
parsing, and rules-based linguistics (for the NER component) to create our model. 

Our rules are not regular expressions (something found in most natural language understanding models), but are linguistic 
rules combining words, their forms and characteristics (part of speech, plural/singular form, verb tense, etc.) and 
dependencies (subject, object, modifier, etc.), as well as their location within the document.

To accomplish this, we used a proprietary ontology to assign meanings to words and determine their relations. The ontology 
is based on fragments of the Foundational Model of Anatomy (FMA) [13], RadLex [14], and was enriched with the knowledge of 
our subject matter experts (SMEs). The visualization of a small subset of the ontology is shown in Figure 3.

The most complicated step of the model was defining the relationships between entities. After all previous steps are 
completed, and the model knows what the tagged entities (measures, organs, locations) are referring to, as well as knows 
the syntactic dependencies between them, the model uses a set of rules and heuristics to determine semantic relations 
between entities. 

Once the relations extraction is completed, the model has all the required information to extract data of interest, in this 
case, a set of measured lung nodules. It excludes measurements from reference citations (such as the Fleischner
Society [15] guidelines for incidentally detected lung nodule follow-up). Finally, the model selects the largest
nodule and outputs its size, location, and characteristics. 
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EON MODEL METHODS

Figure 3. Knowledge 
base (ontology) 
representation graph.
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To evaluate the model performance, we selected 2,480 radiology reports from CT exams that covered at least 
part of the lungs. Our two SMEs, an interventional pulmonologist and an imaging physicist, annotated these 
documents in parallel, with all annotation conflicts reviewed and resolved afterward. The annotations were 
performed on maximum dimension size of the largest lung nodule. The dataset contains 2,070 true positive 
documents (with lung nodules present) and 410 true negative documents (without lung nodules). 

Smaller subsets of this dataset were 
annotated for the characteristics of the 
largest nodule as shown in Table 1. 

We found the accuracy agreement between 
the model and the annotated gold standard 
records for the presence of a lung nodule 
was 98.95%, with 98.99% precision and 
99.66% recall. The measurement accuracy 
of the measurement of the largest nodule 
was 97.74%. The accuracy results did not 
decrease with the additional classification 
of nodule characteristics; conversely, 
accuracy was found to improve slightly.

MODEL EVALUATION

Table 1. Final model output with sample values.

PARAMETER VALUE

Max measurement

Single/multiple

Laterality

Max Nodule Lobe

Max Nodule Shape

Max Nodule Density

Max Nodule Margin

Max Nodule Calcification

8 mm

Multiple

Bilateral

Lower

Round

Solid

Smooth

Non-calcified
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We are on a mission to ensure the right data 

reaches the right people at the right time to 

identify disease early and stop it in its tracks. 
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defy disease.


